SOLUTION SHEET 4:

- 1. Let KCL be a field extension of degree 2. Let $\alpha \in L$ and $m_{\alpha,k}$ be the minimal polynomial of α over K. Then deg $m_{\alpha,k} \le 2$ if deg $m_{\alpha,k} = L$ then α is the only not of $m_{\alpha,k}$ so $m_{\alpha,k}$ clearly splits in L(x). Suppose that deg $m_{\alpha,k} = 2$ & let $m_{\alpha,k} = x^2 + \alpha x + b$ and let β be the other noot of $m_{\alpha,k}$. Then $-\alpha = \alpha + \beta \Rightarrow \beta = -\alpha \alpha \in L$ so $m_{\alpha,k}$ splits in L(x).
- 2. First suppose that KEL is normal and let $\sigma: L \to K$ be a K-homo.

 As L/K is normal $L = SF_K(S)$ for $S \subseteq K[X]$. Let $f \in S$ and $\alpha \in L$ be a root of f. Then as σ is a K-homo, $\sigma(\alpha)$ is also a root of f and $\sigma(\alpha) \in L$. This shows that $\sigma(L) \subseteq L$ To see that σ is surjectively let $g \in L$ and consider the field extension $K \subseteq K(g_1, g_1)$ where g are the roots of $m_{0,K}$ in L. Then $K \subseteq K(g_1, g_1)$ is a finite extension, let g be its degree. Consider the restriction of σ on $K(g_1, g_1)$, its image is contained in $K(g_1, g_1)$ hence $\sigma(K(g_1, g_1))$ is a sub K-vector space of $K(g_1, g_1)$ but σ is injective dim $\sigma(K(g_1, g_1)) = g \Rightarrow \sigma(K(g_1, g_2)) = K(g_1, g_1)$ but σ is injective dim $\sigma(K(g_1, g_2)) = g \Rightarrow \sigma(K(g_1, g_2))$.
 - *: Here we don't use that K⊆L is normal. It suffices that o(L)⊆Z

Suppose that for every K-hamo, $\sigma: L \to K$, $\sigma(L)=L$. Let $\alpha \in L$ and consider the irreducible polynomial $m_{\alpha,k}$ of α over K. Let $\beta \in K$ be an unother noot of $m_{\alpha,k}$. Consider the K-isomorphism, $\gamma: K(\alpha) \to K(\beta)$.

If yield a K-homo. Is: K(x) > K(B) - K. Consider the following fact:

Fact: Let $\phi: H \to A$ be a field homo, and A be algebraically closed. Suppose that $H \subseteq Q$ is an algebraic field extension then ϕ extends to $\overline{\Phi}: Q \to A$.

Using this fact extend $\widetilde{\mathcal{V}}: K(\alpha) \to \overline{K}$ to a K-hamo, $\overline{\mathcal{V}}: L \to \overline{K}$. Now by hypothesis $\overline{\mathcal{V}}(L)=L$ so $\overline{\mathcal{V}}(\alpha)=B\in L$ therefore L contains all the roots of $m_{K,IK}$ & $K\subseteq L$ is normal.

3. As L/K is finite Galois of degree 2d, IGaI(L/K) = 2d. As d is odd 21 is the highest power of 2 dividing 2d. Now by Sylow theorems there exists H& GaI(L/K) with IHI=2. This shows that index of H is IGaI(L/K): HI= IGaI(L/K)1/1HI=d.

4. Recall the quaternion group Q:

$$Q = \{1, i_1 \}_{1 \in [-1, -1, -1, -k]}$$

$$i^2 = -1$$

$$i^2 = -1$$

$$i^2 = -1$$

$$k^2 = -1$$

$$k^2 = -1$$

$$k^2 = -1$$

$$k^2 = -1$$

let $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ be the roots of f. Let $K := \mathbb{Q}(\alpha_1, -, \alpha_4)$. Any element in G:=Gal(K/Q) is determined by its action on d1, d2, d3, d4. Let n be the number of distinct roots then Gembeds into Sn as it permutes the roots. If n<4 [G1 < 8 so G ≇ Q. Suppose that n=4 then G → S4. But no subgroup of Sy is isomorphic to Q. Indeed, there are Gelements of order 4 in Q [i,j,k,-i,-j,-k] and there are 6 elements of orelet 4 in Sy these are the 4-cycles. However, all elements of order 4 have the same square in Q but not in S4.

5. Suppose that F/K is normal. Let alf, te Gallerk) and of ett. Then rola) is chather root of mark and is contained in F by normality. Therefore, o(cla)= τla)= τιστια)=x. As this holds for all xet, τιστε H and H&Gal(L/K) Now suppose that H.J. Gal (L/K) and let al, o be as before. Then as L/K is Galois, Mark splits in L[X] let B be a root of Mark. As L/K is Galois,

GallL/KI acts transitively on the noots of $m_{\alpha | K} \Rightarrow there exist <math>\gamma \in GallL/K$ Such that $\gamma(\alpha) = \beta$. By normality of H, $\gamma - \sigma \gamma(\alpha) = \alpha \Rightarrow \sigma(\gamma(\alpha)) = \gamma(\alpha) = \beta$ $\Rightarrow \sigma(\beta) = \beta \Rightarrow \beta \in F \Rightarrow F/K$ is normal.

Suppose that H & Gal(L/K) and define $\phi: Gal(L/K) \rightarrow Gal(F/K)$ O HO DIF

if $\sigma \in H$ then $\sigma_{if} = id_F$ so $H \subseteq Ker \Phi$ but also the fixed field of ker Φ contains F thus kerge H => H=kerty. It renains to show that of is surjective. Let $\mathcal{X} \in GailF7K$) then by the normality of L/K \mathcal{X} extends to an automorphism $\overline{\mathcal{X}}$ of L fixing K so we have $\overline{\mathcal{X}}|_{F} = \mathcal{X}$. This shows that Φ is surjective ord Gall/K)/H = GallF/K).

Here we use that H & GallL/K) therefore F/K is normal and of (F) EF.

(i) $Q\subseteq Q(52,53)$: As chor Q=0 the extension is separable. It can be seen that $Q(52,53)=SF_Q((x-52)(x+52)(x+53)(x-53))$ so the extension is normal therefore it is a Galois extension.

It is clear that $[Q(52,53):Q]=4 \Rightarrow |G|=4$ where $Q=G_Q(Q(52,53)/Q)$. Note that there are $Q=G_Q(Q(52,53)/Q)$. Note that there are $Q=G_Q(Q(52,53)/Q)$. Take $Q=G_Q(Q(52,53)/Q)=1$. Take $Q=G_Q(Q(52,53)/Q)=1$. Take $Q=G_Q(Q(52,53)/Q)=1$. Therefore $Q=G_Q(Q(52,53)/Q)=1$. In any case we get $Q=G_Q(Q(52,53)/Q)=1$. Therefore $Q=G_Q(Q(52,53)/Q)=1$. Therefore $Q=G_Q(Q(52,53)/Q)=1$. Therefore $Q=G_Q(Q(52,53)/Q)=1$.

{id, τ , σ , τ o} where $\tau(52) = -52$ $\sigma(52) = 52$ $\tau\sigma(52) = -52$ non trivial $\tau(52) = 53$ $\sigma(53) = -53$ $\tau\sigma(53) = -53$ There are 3' subgroups, $H_1 = 1$ id, τ ol, $H_2 = 1$ id, σ l, $H_3 = 1$ id, τ ol, τ ol, τ olice that fixed field of τ ol, τ olice that τ olice is fixed by τ olice that τ olice τ olice

(ii) $\mathbb{Q} \subseteq \mathbb{Q}(\eta)$: As before separability is clear. To see normality note that $\mathbb{Q}(\eta) = SF_{\mathbb{Q}}(x^5-1)$.

The minimal polynomial of η over $\mathbb Q$ is given by $x^1+x^3+x^2+x+1$ hence $\mathbb Q(\eta):\mathbb Q]=4\Rightarrow |G|=4$ where $G:=Gal(\mathbb Q(\eta)/\mathbb Q)$. Consider the $\mathbb Q$ -automorphism $\mathbb T$ given by $\mathbb T[\eta]=\eta^2$. Note that such a $\mathbb T$ exists as Galois groups act transitively on the roots of minimal polynomials. It can be seen that iterating $\mathbb T$ we obtain all the roots of $x^4+x^3+x^2+x+1$ and the order of $\mathbb T$ is 4. This shows that $G\cong \mathbb Z/4\mathbb Z$. The only non trivial subgroup is $H:=1id_1\mathbb T^{2^2}$. Observe that H fixes $\eta^2+\eta^3$ thus the fixed field of H contains $\mathbb Q(\eta^2+\eta^3)$. It can be also seen that $m_{\eta^2+\eta^2}\mathbb Q=x^2+x-1$ thus $\mathbb [\mathbb Q(\eta^2+\eta^3):\mathbb Q]=2$ which shows that the fixed field is $\mathbb Q(\eta^2+\eta^3)$.

(7) (1) Let chark=p>0 and q=pe. Then chark=p and ILI=pe for some f such that elf.

Consider the chain of field extensions, $F_P \subseteq K \subseteq L$ and recall that $K = SF_{F_P}(x^P - x)$ and $L = SF_{F_P}(x^P - x)$ moreover $x^P - x$ is separable thus the extension $F_P \subseteq L$ is separable. This shows that $K \subseteq L$ is separable. To see that $K \subseteq L$ is normal note that $L = SF_K(x^P - x)$.

- (ii) Denote the Frobenius morphism by F. By the above description of K it is clear that F(k)=k thek. This shows that F(k)=k thek. This shows that F(k)=k the Note that F(k)=k the so if we show that the order of F(k)=k then the order of F(k)=k then F(k)=k then F(k)=k this shows that F(k)=k for all F(k)=k this shows that F(k)=k for order of F(k)=k and this polynomial has at most F(k)=k the elements of F(k)=k and then F(k)=k then F(k
- (iii) Let a ELV let us compute the norm of a EL. Recall that for a EL such that CK(a): KJ = t and [L:K(a)] = P/et the characteristic polynomial of the matrix Ma. L > L corresponding to multiplication

by a is given by (maix). As KCKa is Galois, MX, K = TT (x-o(x)) and the characteristic polynomial of Mx is $\chi(M_{\alpha}) = \left(\prod_{\sigma \in G_{\kappa_1}(\kappa(\kappa)_{\kappa})} (x - \sigma(\kappa)) \right)^{\rho} = 1$ Now recall that Gal(L/K)/Gal(L/K(x)) = Gal(K(x)/K) and |Gal(L/K(x))=1/et therefore for each $\sigma \in Gallk(x)/k)$ there exist flet many elements $\{\sigma_i\}_{i=1}^{k} \subseteq Galll/k\}$ such that $\forall \beta \in k(x)$ $\sigma_i(\beta) = \sigma(\beta)$. In particular, $(x-\sigma(x))$. $(x-\sigma(x)) = \prod_{i=1}^{\ell} (x-\sigma_i(x))$ 1/et times Applying this to every element in GallK(x)/K), we can write

 $X(M_{x}) = TT$ (x- $\sigma(x)$). Therefore, the norm NLx) of x is given by N(x)= TT o(x). Recall that Gal(L/K)= 2/22 is generated by the Frobenius F: and x9 thus, $N(x) = \prod_{i=0}^{\ell/e} \alpha^{i} = \alpha^{1+q+-} + q^{\ell/e} = \alpha^{(q^{\ell/e}-1)/q-1}$ Now we know that $x^p - \alpha = 0$ or if $x \neq 0$ $x^{p^2-1} - 1 = 0$. Moreover $K = SF_p(x^{p^2} - x)$. Take $\beta \in K^{\times}$ then we claim that B9-1/9PP-1 E L. Indeed, $(\beta^{q-1/q^{q/e}-1})^{p^{q}-1} - 1 = (\beta^{q-1/p^{q}-1})^{p^{q}-1} - 1 = \beta^{q-1} - 1 = 0.$

This shows that for $\beta \in K$, $N(\beta^{q-1/q^{q/e}-1}) = \beta$.

(8) First of all note that $\times^{4}+x+1$ is irreducible and separable. Moreover it's noots are given by $\alpha_{1}x^{2}, \alpha_{1}x^{4}, \alpha_{2}x^{4}$ (these are all distinct because clearly, $\alpha_{1}+\alpha_{2}x^{2}$, moreover $\alpha_{1}+\alpha_{1}+1=0 \Rightarrow \alpha_{1}=\alpha_{1}+1$, likewise $\alpha_{2}=\alpha_{1}+1$. This snows that $F_{p}(x_{1})/F_{p}$ is normal \Rightarrow $F_{p} \subseteq F_{p}(x_{1})$ is Galois \Rightarrow $F_{p}(x_{1}):F_{p}=1=G_{cl}(F_{p}(x_{1})/F_{p})$. As elements of $G_{cl}(F_{p}(x_{1}):F_{p})$ permute the roots $\alpha_{1},\alpha_{1}^{2},\alpha_{1}^{4},\alpha_{2}^{8}$ it is clear that $G_{cl}(F_{p}(x_{1}):F_{p})\cong Z/UZ$ generated by the Frobenius $x\mapsto x^{2}$. The only subgroup of order 2 of Z/UZ is given by Z/UZ which is generated by $x\mapsto x^{4}$. Now notice that

 $(\alpha+\alpha^2)^4 = \alpha^4 + \alpha^8 = \alpha+1+\alpha^2+1 = \alpha+\alpha^2$ Therefore $\alpha+\alpha^2 \in L^H$ moreover $\alpha+\alpha^2 \notin \mathbb{F}_2$ as if $\alpha+\alpha^2=0$ or $\alpha+\alpha^2=1$ this relation would yield a polynomial of-degree 2 for which α is a root but the minimal polynomial of α is $x^4+x+1.$ Finally notice that $(\alpha+\alpha^2)^2+(\alpha+\alpha^2)+1=\alpha^2+\alpha^4+\alpha+\alpha^2+1=\alpha^4+\alpha+1$

 \Rightarrow x^2+x is a root of x^2+x+1 \Rightarrow $(\text{TFp}(x^2+x): \text{TFp}]=2$. By the Galois correspondence (LH:Fp]=2 and there is only one intermediate field of degree 2 between IFp and IFp(x) by the uniqueness of H. This shows that $\text{LH}=\text{Fp}(x^2+x)$.